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ABSTRACT—Adult female sea turtles are highly migratory, moving between foraging and 

nesting areas that can be thousands of kilometers apart. Conserving sea turtles and their habitats 

therefore depends on knowledge of space use across these migration-linked environments. Here, 

we describe migratory behavior of hawksbill sea turtles (Eretmochelys imbricata), a globally 

imperiled species. We used satellite telemetry to characterize the movements of females from 

nesting areas in Jamaica (n = 4) and Antigua (n = 4), West Indies, over 1998–2001. We mapped 

migrations and summarized space use during inter-nesting and foraging periods with kernel 

utilization distributions (UDs) and minimum convex polygons. Seven of eight turtles made post-

nesting migrations, with paths ranging 56–1324 km in length, representing straight-line 

displacements of 68–1206 km. Two turtles sampled in southern Jamaica made short-range 

migrations within southern Jamaican waters, whereas two from northern Jamaica migrated 

further to foraging areas in the waters of Belize and Honduras. Three migrants sampled at Long 

Island, Antigua migrated to St. Eustatius, St. Kitts, and Redonda, respectively, with a fourth 

individual remaining resident in northeastern Antigua. Inter-nesting movements observed for 

three turtles produced 50% UDs ranging 12–44 km2, with centroid depths between 4–13 m. 

Foraging UDs for seven turtles spanned 8–111 km2 and 2–161 m in depth. Our results reveal 

variable migratory strategies, demonstrate international connectivity between hawksbill foraging 

and nesting habitats, and provide important information for Caribbean conservation efforts such 

as the design of protected areas or fisheries policies. 

 

Keywords Satellite tracking, inter-nesting, foraging, switching state space model, platform 
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INTRODUCTION 

 

 Adult sea turtles (Cheloniidae) spend the majority of their lives at sea in foraging habitats 

where they are often difficult to locate and observe. After accumulating sufficient energy 

reserves, females periodically migrate to their nesting beaches where observation is much easier. 

Studies based at nesting beaches form the foundation for most population monitoring programs, 

but these habitats are visited only briefly by adult females during the nesting season every ~2–4+ 

years (Lutz and Musick 1997). A better understanding of marine habitat use is essential for 

conservation strategies such as protected area design and threat management (e.g., fisheries 

bycatch reduction), as well as research efforts, e.g., evaluating the relationship between foraging 

habitat quality and population dynamics (Ceriani et al. 2017; Hays and Hawkes 2018; Hart et al. 

2019).  

 The advent and growth of satellite telemetry technology over the past several decades 

have helped to address knowledge gaps surrounding the movement ecology of sea turtles (Hays 

and Hawkes 2018). Adult females can be outfitted with satellite transmitters on nesting beaches 

and then tracked to foraging areas. However, to date, satellite-tracking research has been 

disproportionately concentrated on certain populations, regional management units (RMUs; 

Wallace et al. 2010), and species. For example, Hays and Hawkes (2018) synthesized sea turtle 

satellite tracking research to find that almost half of all transmitters deployed have been placed 

on loggerhead sea turtles (Caretta caretta; Linnaeus, 1758), with the other six species lagging 

well behind.  

 Hawksbill sea turtles (Eretmochelys imbricata; Linnaeus, 1766) in the Caribbean present 

a clear situation in which more satellite tracking research would be beneficial. Hawksbills nest 
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on nearly all land masses in the Caribbean Sea, often in low densities on relatively small beaches 

(Eckert and Eckert 2019). Yet, satellite-tracking records documenting post-nesting migrations 

from regional rookeries have been published for only 85 individual females from 12 nations or 

insular territories (Horrocks et al. 2001; Troëng et al. 2005; van Dam et al. 2008; Moncada et al. 

2012; Esteban et al. 2015; Revuelta et al. 2015; Nivière et al. 2018; Hart et al. 2019; Uribe-

Martínez et al. 2021; Soanes et al. 2022). As individuals are tracked from additional nesting 

locations, connectivity with new foraging areas is often revealed, underscoring the need for 

wider geographic representation in tracking research. Nonetheless, previous work has revealed a 

preliminary pattern in the distribution of regional foraging areas, and it is apparent that 

hawksbills can migrate thousands of kilometers and cross through multiple exclusive economic 

zones (EEZs). This combination of highly migratory behavior and a relatively large number of 

management authorities makes the management of sea turtles in the Caribbean particularly 

complex. 

 In the present article, we describe the movements of post-nesting hawksbills tracked from 

Antigua and Jamaica over 1998–2001. This work was coordinated by the United States National 

Oceanic and Atmospheric Administration (NOAA) and hinged on collaboration with several sea 

turtle monitoring programs in the Caribbean region. We revisit this project, part of the Caribbean 

Hawksbill Tracking Consortium, to disseminate key data and extract as much information as 

possible for the benefit of hawksbill conservation. The eight satellite tracks represent an 

important contribution to the regional knowledge base regarding hawksbill habitat use, providing 

a ~9% increase in the number of post-nesting females tracked from Caribbean nesting beaches. 

Our goals were to model and map post-nesting movements, characterize habitat use during 
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foraging periods and inter-nesting intervals (i.e., during a nesting season, before migrating), and 

put results in the context of related work in the region. 

 

MATERIALS AND METHODS 

 

Study areas and transmitter deployment 

  

 We deployed eight satellite transmitters (hereafter platform terminal transmitters; PTTs) 

during this study—four in Antigua and four in Jamaica. Antiguan hawksbills were outfitted with 

PTTs (Telonics ST-14 1.0 watt) at Pasture Bay on Long Island (17° 09' 31" N, 61° 45' 19" W), a 

barrier island to the northeast of mainland Antigua where the Jumby Bay Hawksbill Project 

(JBHP) has conducted yearly monitoring since 1987 (e.g., Richardson et al. 1999; Kendall et al. 

2019). Transmission records for these four turtles began when PTTs were deployed in 1998, on 

12 September (PTT 8455), 16 October (PTT 8456), 25 October (PTT 8552), and 12 November 

(PTT 8553). Two individuals had nested at Long Island several years previously and were 

therefore remigrants (Table 1). The other two turtles were observed for the first time in the year 

of PTT deployment.  

 Two of the Jamaican turtles were outfitted with PTTs in 1998 in the vicinity of Portland 

Bight (77° 07' 42" W, 17° 43' 31" N) in southern Jamaica. Both turtles were intercepted after 

nesting on the night of 19 September, one at Little Portland Cay (PTT 8442) and the other at Big 

Half Moon Cay (PTT 8443). Available transmission records for both began later, on 6 October 

(preceding data may have been lost during long-term storage, however, we still observed inter-

nesting behavior for both turtles). The other two individuals were outfitted with PTTs in 2000 in 
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St. Mary Parish on the northern coast of Jamaica, in the vicinity of Oracabessa and Port Maria. 

PTT 7677 was deployed on 19 July and PTT 7665 was deployed on 13 September. 

 Information on turtle Inconel flipper tag numbers and nesting histories, where available, 

is provided in Table 1, along with the number of raw and model-fit locations used in subsequent 

analyses. Methods for PTT attachment followed those outlined by Balazs and Parker (1998). 

Researchers waited for a turtle to finish laying eggs and covering its nest, then safely detained it 

in a wooden box or frame in order to affix the PTTs with polyester resin and fiberglass cloth.  

 

State-space modeling 

 

 We performed all data analyses in program R (version 3.5.2; R Core Team 2018) using 

RStudio (version 1.1.463; R Team 2015). State-space movement models additionally used JAGS 

(version 4.2.0; Plummer 2003). Location data from satellite transmitters were provided by the 

ARGOS satellite system. ARGOS fixes result when turtles surface and expose a PTT’s sensors 

and antenna to air, with longer periods at the surface generally corresponding to more signals 

sent to satellites and thus better location accuracy. Location fixes additionally depend upon 

satellites being in position overhead. As a result, transmitted locations are temporally irregular 

and are each assigned a class representing estimated spatial accuracy (from highest accuracy to 

lowest: class 3, 2, 1, 0, A, B, and Z; numbered classes range < 250 m to >1500 m in estimated 

accuracy and lettered classes have no associated estimate for spatial accuracy).  

 We used a Bayesian, hierarchical state-space model (SSM) to accommodate inaccuracy 

and irregularity in observations and estimate true locations at regular timesteps. Specifically, we 

fit a switching, first difference correlated random walk (DCRWS) model that uses Markov Chain 
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Monte Carlo (MCMC) sampling to estimate locations and assign each location one of two 

behavioral states. This type of model focuses on the differences between consecutive locations 

(i.e., distance and turning angle) as described by Jonsen et al. (2005). The model assumes two 

distinct behavioral states, each with different movement parameters, and discriminates (i.e., 

switches) between the two states based largely on patterns in swimming speed and direction. 

This SSM approach is useful for quantitatively differentiating between migratory and non-

migratory states—migrations are associated with straighter paths and higher swim speeds (state 

1), whereas non-migratory behavior entails high turning angles and slower speeds (state 2). The 

switching SSM has been used extensively to model movement data for sea turtle migrations 

(e.g., Jonsen et al. 2007; Hart et al. 2019, 2020). 

 We first used the R package ‘argosfilter’ to filter raw location data by removing 

erroneous satellite fixes that would produce swimming speeds above a conservatively high 

velocity of 2.5 m s-1 (Freitas 2012). We then used the remaining data to implement the SSM with 

the R package ‘bsam’ (Jonsen et al. 2005; Jonsen 2016). The eight tracks were modeled in a 

single, hierarchical run. This joint approach entails the estimation of identical movement 

parameters for all individuals and can significantly improve state estimation by pooling statistical 

power (Jonsen 2016). We specified the model to estimate locations every eight hours. MCMC 

settings were designated for an adaptation and burn-in phase of 10,000 samples each followed by 

10,000 posterior samples that were thinned by five. We evaluated model convergence by 

assessing stationarity in the posterior samples and monitoring for well-mixed MCMC chains, 

low within-chain sample autocorrelation, and sufficiently low Brooks–Gelman–Rubin shrink 

factors (below 1.1; Brooks and Gelman 1998).  
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Summarizing space use 

 

 We characterized patterns in movement during migratory and non-migratory periods 

based on the SSM-generated dataset of model-fit locations for the eight turtles. We first used the 

median behavioral state (either 1 or 2) from the model posterior samples to assign each location 

to a turtle’s inter-nesting, migratory, or foraging period. To summarize movements during 

migratory periods, we calculated the distance each hawksbill traveled along its migratory path. 

Additionally, we computed the straight-line distance (i.e., displacement) between the centroids of 

each turtle’s foraging and inter-nesting range; if no inter-nesting behavior was observed, we 

instead used the first location of the migratory path.  

 We characterized space use during inter-nesting and foraging periods with home range 

analyses from the R package ‘adehabitatHR’ (Calenge 2006). For all non-migratory periods, we 

computed 50% and 95% utilization distributions (UDs) with kernel density estimation, in 

addition to 95% minimum convex polygons (MCPs). Kernel UDs use a smoothing parameter to 

estimate the true area of use based on all observed locations (i.e., satellite fixes), accounting for 

where fixes are most concentrated (Worton 1989). Here, we used a 50% UD to represent the 

inner core area of use and the 95% UD for the full extent of home range movements (excluding 

5% to reduce bias from outliers). In contrast, a MCP more simply bounds a polygon to the 

outermost locations, here after excluding the outer 5% to remove outliers. Thus, MCPs provide a 

less-manipulated (i.e., no smoothing function) representation of the full home range and are also 

useful for comparing results to previous studies utilizing this method. We did not delete model-

fit locations on land before computing UDs and MCPs to avoid introducing user bias, as these 

locations could be closer to true turtle positions than a given point in water. When generating 
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maps, we excluded UD and MCP areas that overlapped land by placing home range polygons 

underneath land polygons. We computed centroids for the 50% UDs (both inter-nesting and 

foraging) to measure straight-line migration distances. We also used these centroids to examine 

water depth, extracting depth data from the 2020 General Bathymetric Chart of the Oceans (15 

arc-second resolution; GEBCO Compilation Group 2020). At this resolution, the depth data 

presented are a coarse representation of bathymetry in these areas. In one case, UD geometry 

resulted in an inter-nesting centroid located on land (PTT 7665); we assigned this centroid the 

value from the nearest raster cell containing a depth below sea level.  

 

RESULTS 

 

Transmitter deployments 

 

 Satellite transmissions for the eight hawksbills spanned a mean ± SD of 353 ± 103 days 

per turtle (Table 1). Transmissions began on the start date of the inter-nesting period for turtles 

that exhibited this behavior, otherwise the start of the migration represents the beginning of 

transmissions (Table 2; Table 3). PTT 8553 is the exception, because we assigned all locations to 

the foraging period for this individual (Table 3). Three of the six PTTs deployed in 1998 ceased 

transmitting on 3 December 1999, when service was stopped due to financial considerations. All 

other PTTs, including the two from 2000, ceased transmitting on their own, likely due to loss of 

battery power, damage, or failure (although mortality cannot be ruled out). 

 PTT 8553 did not provide usable satellite location data over two stretches of >50 days 

(e.g., 1 July–28 August 1999). During these times it provided only locations of quality Z, the 
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highest error designation, and no associated coordinates. Therefore, we split this track into three 

segments and modeled each separately so that the SSM would not estimate locations during long 

stretches with no raw data to inform the model. We then combined the three sets of model-

estimated behavioral states and locations for further analysis. 

 

Migrations 

 

 Seven of the eight hawksbills exhibited post-nesting migrations, with paths ranging 56–

1324 km in length (mean ± SD = 357 ± 488 km; Table 2). One turtle tagged in northern Jamaica 

exhibited two distinct migrations (PTT 7665), first traveling 321 km to forage in Jamaican 

waters for ~71 days and then migrating another 403 km to a destination in Nicaragua’s EEZ (Fig. 

1). For migratory summary statistics presented here, we summed the two resulting path lengths 

and computed an overall straight-line distance to its final foraging home range. Notably, the two 

individuals tagged in northern Jamaica had straight-line migration distances >600 km, whereas 

all other individuals had migratory distances <140 km (Table 2; Fig. 1; Fig. 2; Fig.  3). Of the 

seven migrants, three did not exhibit inter-nesting behavior (detailed below), and therefore we 

calculated their straight-line migration distances using the first location of the migratory path 

(not the inter-nesting centroid); these three first locations were <200 m from shore and thus did 

not introduce appreciable bias as compared to using centroids to compute migration distances. 

 The two long-range migrants from northern Jamaica established foraging areas in 

southern Belizean and eastern Honduran waters (Fig. 1). The double migrant from northern 

Jamaica (PTT 7665) first foraged in an area in the northwestern portion of Pedro Bank, Jamaica, 

and made its second migration to an area approximately 200 km west of Serranilla Bank, 
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Colombia. The other female from northern Jamaica (PTT 7677) foraged near Placencia, Belize, 

easternly adjacent to Lark Caye. The two individuals tagged in Portland Bight remained in 

southern Jamaican waters, migrating to the relatively shallow areas of Blossom Bank and 

northeastern Pedro Bank (Fig. 2). The migrations of all four Jamaican turtles were contained 

within the Nicaraguan Rise, an oceanic ridge that begins in eastern Honduras and northern 

Nicaragua and stretches northeast to Jamaica. The three hawksbills the migrated from Antigua 

traveled relatively short distances to coastal areas near St. Eustatius, St. Kitts, and Redonda, 

respectively (Fig. 3). Redonda is an uninhabited, small island (< 3 km2) located to the southwest 

of Antigua and is part of the nation of Antigua and Barbuda.  

 The fourth turtle tracked from Antigua remained resident in northeastern waters around 

Long Island (Fig. 4). The SSM did not detect any switches in behavior for this individual and 

therefore estimated a non-migratory state for all locations. Biologically speaking, over 318 days 

the turtle must have transitioned from a nesting state to a foraging state, as the nesting season for 

hawksbills does not exceed three months (Bjorndal et al. 1985; Kendall et al. 2019). Model-fit 

locations revealed that the turtle stayed around Long Island, Antigua during the whole period of 

satellite transmissions. Thus, we infer that this was a resident turtle, and any small migration 

went unobserved, perhaps occurring during a gap in transmissions. We assigned all model-fit 

locations as the foraging period because the turtle was sampled on 14 November, which is at the 

end of the nesting season (Hart et al. 2019). However, it is likely that this period hosted both 

inter-nesting and foraging behavior (Table 3). 

 

Inter-nesting and foraging areas 
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 Three turtles were outfitted with transmitters at the end of their nesting season and SSM 

results suggested that they immediately migrated, so no information on their inter-nesting 

movements was available (Table 3). Given modeling results, we did not observe inter-nesting 

movements for a fourth, nonmigratory individual from Antigua (PTT 8553). The four individuals 

with inter-nesting data—three from Jamaica and one from Antigua—exhibited inter-nesting 

behavior for a mean of 41 ± 19 days (Table 3; Fig. 4; Fig. 5). Hawksbills deposit clutches 

approximately every two weeks within a nesting season (Bjorndal et al. 1985; Kendall et al. 

2019), so these turtles likely transmitted over periods spanning 1–4 clutches before migrating. 

Inferences into the inter-nesting home range of the single northern Jamaican individual with 

inter-nesting behavior (PTT 7665) were limited by sample size. This turtle’s 50% UD was larger 

than its 95% MCP, potentially indicating an insufficient sample size for reliable home range 

estimation; we present these inter-nesting data but excluded them from summary statistics 

reported here. For the three other turtles with inter-nesting information, we observed 

considerable variation in home range sizes; 50% kernel UDs averaged 27.1 ± 16 km2, while 95% 

UDs covered a mean of 133 ± 69 km2 and 95% MCPs had a mean area of 90.9 ± 49 km2. Mean 

depth at the three inter-nesting UD centroids was 7.33 ± 4.9 m.  

 We documented nine foraging periods for the eight hawksbill females, with one 

individual from northern Jamaica exhibiting two distinct foraging phases. Foraging periods, 

including that of the non-migratory Antiguan individual, spanned a mean of 286 ± 144 days. We 

note that observed foraging and inter-nesting durations were constrained by transmitter function, 

and not necessarily turtle behavior (i.e., true foraging durations before a subsequent migration 

would be much longer). The nine foraging areas that we documented had a mean 50% UD area 

of 39.2 ± 38.5 km2 (Table 3). Much of the variation in 50% UD area was driven by three 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 



 13 

individuals with exceptionally large UD sizes: the two long-range migrants from northern 

Jamaica and the non-migratory individual from Antigua. When excluding these three turtles, 

50% UDs averaged 11.5 ± 3.4 km2. The nine foraging 95% UDs averaged 272 ± 260 km2, while 

95% MCPs covered a mean of 210 ± 200 km2. Mean depth at the nine foraging centroids was 

31.8 ± 50 m. Eight of the nine foraging UDs had centroids with a depth of <35 m, but one 

individual (PTT 8456) foraged near Redonda with a centroid depth of 161 m. The bathymetry 

around Redonda features a rapid drop-off running north-south on the island’s western side, and 

the centroid was located in this steep area (Fig. 3). 

 

DISCUSSION 

 

Migratory behavior 

 

 Our results provide the first published information for hawksbill sea turtles making post-

nesting migrations from Jamaica and Antigua. We tracked eight turtles, of which four remained 

to forage within the EEZ in which they nested, two crossed a single international boundary, and 

two crossed two boundaries (Fig. 6; Fig. 7). These data inform management efforts along 

migratory corridors and at nesting or foraging locations, especially in the context of previously 

published satellite tracking data for the region (discussed below). For example, identifying home 

ranges can facilitate investigation of overlap with regional fishing effort (Dunn et al. 2010), 

which may inform the design of fisheries policies and marine protected areas. The migratory 

behavior we documented also was characterized by considerable variation. Whereas five of 

seven migrants made relatively short-range migrations (path lengths <130 km), two exhibited 
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substantially longer movements (>700 km), with one turtle traveling >1300 km. Interestingly, all 

seven migrations featured a strong westward heading (with variation on the north-south axis), 

adding support to the idea that post-nesting females make use of prevailing currents when 

returning to foraging habitats (van Dam et al. 2008; Horrocks et al. 2011). 

 The two long-range migrants were both tagged in northern Jamaica. One stopped to 

forage for over two months in Pedro Bank, within Jamaica’s EEZ, before migrating to a final 

destination in the EEZ of Honduras (Fig. 1). This site lies within a large area of the Nicaraguan 

Rise that may represent a regional foraging hotspot given the significant proportion of female 

hawksbills tracked to date that have migrated there (Nivière et al. 2018; Hart et al. 2019; Uribe-

Martínez et al. 2021). The other long-range Jamaican migrant traveled to southern Belize, where 

individuals of multiple sea turtle species are known to forage, including hawksbills (Uribe-

Martínez et al. 2021). It is interesting that both long-distance migrants from our study were 

tagged in the same area of northern Jamaica and represent all individuals sampled from that site. 

Future satellite tracking efforts may be merited in this location to determine whether this reflects 

a more general trend or is an artifact of small sample size. In contrast, short-range migrants 

tracked from southern Jamaica remained in the national EEZ. While hawksbills of varying sizes 

have long been known to forage in Jamaican waters (Haynes-Sutton et al. 2011), these satellite 

tracks provide the first evidence of post-nesting hawksbills remaining to forage as national 

residents. The three turtles completing migrations from Antigua also exhibited relatively short-

range movements—two migrated to another potential foraging hotspot in the Leeward Islands, 

spanning Anguilla to Nevis (Hart et al. 2019; Soanes et al. 2022), and the third established 

migratory connectivity between Antigua and the island of Redonda (still within Antigua and 

Barbuda’s EEZ), where hawksbill foraging has long been known to occur (Fuller et al. 1992). 
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 In the context of previous satellite-tracking work, our study adds resolution to a spatial 

pattern emerging for foraging post-nesting females in the Caribbean, which may reflect patterns 

of adults more broadly. Hart et al. (2019) described the movements of 31 nesting females tracked 

from St. Croix, U.S. Virgin Islands and summarized foraging destinations for 33 other females 

across six studies (see Figure 6 in Hart et al. 2019). Nivière et al. (2018) contributed information 

for another 11 adult females tracked from Martinique, French West Indies, Uribe-Martínez et al. 

(2021) tracked three individuals from Quintana Roo, Mexico, and Soanes et al. (2022) tracked 

seven from Anguilla. Satellite-tracking research is complemented by studies analyzing flipper 

tag returns, where tag numbers are physically observed and movements inferred based on where 

turtles were originally tagged (Meylan 1999; Horrocks et al. 2011; Barrios-Garrido et al. 2020). 

Combined, these studies establish a pattern of adult female hawksbills inhabiting neritic areas 

that fringe the deeper waters of the Caribbean Basin to the west, north, and east (Hart et al. 

2019). Moreover, they suggest highly variable migratory patterns. Many hawksbills migrate 

>2,000 km between nesting and foraging habitats, crossing through several EEZs. For instance, 

three hawksbills from St. Croix migrated west across the Caribbean Sea to an apparent foraging 

hotspot in the Nicaraguan Rise (Hart et al. 2019), and tags from females nesting in Barbados 

have been returned from Nicaragua and Honduras (Horrocks et al. 2011). In contrast, many other 

individuals have been recorded making shorter migrations in the range of hundreds of kilometers 

or less (e.g., Horrocks et al. 2001) and/or remain resident near the island where they nest (e.g., 

Hart et al. 2019; Moncada et al. 2012). Similar short-range migrations have been documented in 

areas of the Pacific (Mortimer and Balazs 2000; Parker et al. 2009). In the present study, we 

observed migratory behavior that spanned this continuum. 
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Inter-nesting and foraging home ranges 

 

 The characteristics of the inter-nesting and foraging home ranges that we described for 

eight individuals provide useful insight into patterns in habitat use for adult female hawksbills in 

the Western Atlantic. Here we focus discussion on 50% UDs, as these should be less sensitive to 

outlier behavior than 95% MCPs or UDs. We documented inter-nesting 50% UDs for three 

turtles, one from southern Jamaica and two from Antigua. UD sizes ranged 12–44 km2, with a 

mean of 27 km2. Mean depth at the centroids of the three inter-nesting UDs was 7 m, with a 

maximum of 13 m. These home range sizes fall squarely within the range of two previous studies 

that provide a basis for comparison. Using the same modeling methods (i.e., a switching SSM), 

Hart et al. (2019) documented inter-nesting 50% UDs between 9.6 and 77.7 km2 for 25 turtles 

from St. Croix, with a mean depth of 16.2 m. Revuelta et al. (2015) did not use comparable SSM 

methods, but used ARGOS data to describe inter-nesting 50% UDs for seven individuals from 

the Dominican Republic with a mean area of 13.2 km2.  

 Our sample size for foraging UDs was larger because we observed this behavior in all 

eight turtles. The nine foraging 50% UDs we documented spanned from 8 to 111 km2, with a 

mean of 39 km2. With the exception of one turtle whose foraging centroid had a depth of 161 m, 

all centroids were shallower than 35 m. It is interesting that the three largest foraging UDs were 

produced by the two longest-distance migrants (from northern Jamaica), including both UDs 

exhibited by the turtle exhibiting two migrations. It is possible that longer-ranging migrants 

require more time to locate their preferred foraging home range after switching to nonmigratory 

behavior in the vicinity of their foraging area, which could result in an expanded home range 

estimate. This potential association between long migrations and large foraging home ranges 
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may merit further investigation. Our results were largely consistent with the previous studies by 

Hart et al. (2019) and Revuelta et al. (2015), although the largest foraging 50% UD that we 

documented fell outside the range of the cited work. Hart et al. (2019) described foraging 50% 

UDs for 31 individuals, ranging in area from 6.3 to 95.4 km2 and with a mean depth of 65.8 m. 

Revuelta et al. (2015) described eight foraging UDs with a mean area of 16.2 km2.  

 Our results from home range analyses add to a body of evidence suggesting that variation 

in both inter-nesting and foraging area sizes is common. Future work elucidating the drivers of 

this variation would be valuable to the management of hawksbill habitat in the region, as clearly 

some hawksbills occupy much larger areas while nesting or foraging and thus would benefit 

from expanded habitat protection measures compared to turtles with smaller ranges. Drivers of 

home range variation could include factors such as site-specific availability and distribution of 

food sources and shelter areas, as well as potential competitive interactions with other turtles and 

marine fauna. Individual behavior (i.e., movement tendencies and habitat preferences) likely also 

plays a role in documented variation. Building on ARGOS datasets with higher accuracy, GPS-

enabled transmitters would help to refine our understanding of home range behavior (Dujon et al. 

2012). For instance, Walcott et al. (2012) used GPS data to examine fine-scale movement 

patterns of hawksbills in Barbados during intervals between successive nests, identifying distinct 

phases of movement during which nesting females moved to and from small residency areas that 

ranged only 0.01–0.40 km2. Expanding knowledge of these finer scale movement patterns, 

including within foraging areas, would be highly useful to site-specific management and lend 

insight into drivers of behavioral variation. 

 

Conclusions 

344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 



 18 

 

 Our findings from satellite tracking eight individuals are consistent with an emerging 

spatial pattern for the migratory and foraging behavior of adult female hawksbills in the 

Caribbean. We also described post-nesting migratory connectivity to three foraging locations to 

which hawksbill had not been tracked in previous literature (Blossom Bank, Jamaica; Pedro 

Bank, Jamaica; Redonda, Antigua and Barbuda). This result highlights the need for tracking 

from additional nesting areas to better characterize connectivity between hawksbill nesting and 

foraging areas in the Caribbean. Extremely little is known about the distribution of adult males in 

this region due to the difficulty of accessing this population sector, but we speculate that the 

foraging distribution of adult females may serve as a useful proxy for adult males given similar 

habitat preferences. Whether males exhibit similar migratory patterns merits further study. 

Hawksbills are highly imperiled in this region (Mortimer and Donnelly 2008) and face threats 

from human activities and global environmental change (Hamann et al. 2013; Maurer et al. 2015, 

2021a, 2021b, 2022). Because the recovery of the Caribbean population will depend in part upon 

survival of adults, especially considering their high reproductive value (Crouse et al. 1987), 

identifying and protecting adult migratory and foraging habitats should be among our top 

priorities for conserving this species. 
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 592 

TABLE 1. Summary of satellite transmitter deployments. A “•” denotes information was not 

available. Days tracked indicates the span of satellite transmissions rounded to the nearest whole 

day. Raw fixes refer to the number of ARGOS locations (post filtering) that were used to model 

movements. IN (inter-nesting), migration, and foraging points display the number of switching 

SSM model-estimated locations assigned to each period (three points estimated per day). 

PTT 
ID 

Days 
tracked 

Raw 
fixes 

IN 
points 

Migration 
points 

Foraging 
points 

Flipper 
tag no. Annual nesting history 

7665a 133 179 46 73 282 • • 

7677 288 300 0 106 759 • • 

8442 423 1211 131 7 1131 • • 

8443 404 930 176 13 1025 • • 

8455 438 1353 145 10 1160 PPN-011 1987, 1989, 1991, 1993, 1995, 1998, 
2001, 2004, 2007 

8456 413 843 0 10 1230 PPC-946 1998, 2000, 2002, 2004, 2006 

8552 404 1140 0 19 1194 PPN-058 1988, 1990, 1992, 1994, 1996, 1998, 
2003, 2005, 2007, 2010, 2012, 2015 

8553b 318 139 0 0 653 PPC-943 1998, 2002 
a This turtle made an initial migration to forage for ~71 days before making a second migration to its final foraging 
destination; we summed migration and foraging points for the two migratory and two foraging periods 
b Because of two large gaps in usable transmissions, this individual’s track was split into three for modeling (and 
then combined); this resulted in < 3 model locations estimated per day of deployment 
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TABLE 2. Migration information for eight hawksbill sea turtles (Eretmochelys imbricata) 

tracked from Caribbean nesting beaches in 1998 and 2000. Migratory durations are rounded to 

the nearest half-day. A “•” denotes the parameter is not applicable due to no observed migration. 

609 

610 

611 

PTT 
ID 

Nesting 
location Start Duration 

(days) 
Path 
(km) 

Straight-line 
distance (km) 

Foraging 
location Coordinates 

7665a N Jamaica 28 Sep 00 13 320.5 235.7 Jamaica 78.8867° W, 17.4434° N 

7665a N Jamaica 22 Dec 00 10.5 403.2 372.0 Honduras 82.0968° W, 16.1233° N 

7677 N Jamaica 19 Jul 00 35 1323.7 1205.5 Belize 88.2168° W, 16.5465° N 

8442 S Jamaica 19 Nov 98 2 55.7 100.9 Jamaica 77.7782° W, 17.0891° N 

8443 S Jamaica 3 Dec 98 4 90.5 95.4 Jamaica 77.9641° W, 17.8888° N 

8455 Antigua 30 Oct 98 3 120.6 139.3 St. Eustatius 62.9993° W, 17.5205° N 

8456 Antigua 16 Oct 98 3 59.4 67.6 Redonda 62.3499° W, 16.9495° N 

8552 Antigua 25 Oct 98 6 126.5 119.1 St. Kitts 62.8386° W, 17.4415° N 

8553b Antigua • • • • Antigua 61.7784° W, 17.1474° N 
a This turtle made an initial migration to a foraging area, remaining for ~71 days before making a second migration 
to a final foraging destination; straight-line distance from IN centroid to final foraging area centroid was 607.3 km 
b No migration observed, individual remained local to NE Antigua 
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TABLE 3. Summary of inter-nesting and foraging home ranges for eight hawksbill sea turtles 

(Eretmochelys imbricata) tracked from Caribbean nesting beaches in 1998 and 2000. Durations 

of observation (i.e., satellite transmissions) are rounded to the nearest half-day. UD denotes 

utilization distribution as computed with kernel density estimation, and MCP denotes minimum 

convex polygon. Depths are provided for the centroid of 50% UDs. A “•” notes that we did not 

observe that behavior. 

625 

626 

627 

628 

629 

630 

 Inter-nesting period Foraging Period 

PTT 
ID Start Duration 

(days) 

50% 
UD 

(km2) 

95% 
UD 

(km2) 

95% 
MCP 
(km2) 

Depth 
(m) Start Duration 

(days) 

50% 
UD 

(km2) 

95% 
UD 

(km2) 

95% 
MCP 
(km2) 

Depth 
(m) 

7665a 

7665a 

7677 

8442 

8443 

8455 

8456 

8552 

8553b 

13 Sep 00 

• 

• 

6 Oct 98 

6 Oct 98 

12 Sep 98 

• 

• 

• 

15 

• 

• 

43.5 

58.5 

48 

• 

• 

• 

41.7 

• 

• 

12.1 

44.3 

25.0 

• 

• 

• 

207.3 

• 

• 

54.8 

158.7 

185.2 

• 

• 

• 

31.0 

• 

• 

35.6 

110.3 

126.9 

• 

• 

• 

5 

• 

• 

5 

13 

4 

• 

• 

• 

11 Oct 00 

2 Jan 01 

23 Aug 00 

21 Nov 98 

8 Dec 98 

2 Nov 98 

19 Oct 98 

31 Oct 98 

12 Nov 98 

71 

22.5 

252.5 

376.5 

341.5 

386.5 

409.5 

397.5 

317.5 

110.5 

56.8 

90.2 

8.1 

12.0 

16.9 

11.4 

9.3 

37.8 

861.0 

284.2 

466.0 

56.7 

109.0 

135.0 

108.3 

59.7 

367.9 

618.7 

127.1 

384.2 

45.1 

100.4 

76.5 

107.1 

54.0 

377.2 

31 

32 

3 

10 

19 

2 

161 

24 

4 
a After migrating away from the nesting beach, this turtle stopped to forage for ~71 days before making a second 
migration to its final foraging destination; information is shown for both foraging periods. Sample size limited 
inference into IN home range behavior; atypically, 50% UD area > 95% MCP, so these data were excluded from 
summary statistics 
b No migration observed, information listed likely spans both inter-nesting and foraging movements 
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 642 

FIG. 1. Migrations and foraging home ranges for two hawksbill sea turtles (Eretmochelys 

imbricata) outfitted with satellite transmitters (PTTs) after nesting in St. Mary Parish, northern 

Jamaica in 2000. Darker polygons in the insets show 50% kernel utilization distributions and are 

paired with larger, lighter 95% minimum convex polygons. Dashed lines display 2000-m depth 

contours in the large map and 100-m contours in the insets. 
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 649 

FIG. 2. Foraging home ranges for two adult female hawksbill sea turtles (Eretmochelys 

imbricata) outfitted with satellite transmitters (PTTs) after nesting in Portland Bight, Jamaica in 

1998. Lines show post-nesting migrations and polygons display foraging home ranges, with 

darker polygons providing 50% kernel utilization distributions paired with larger, lighter 95% 

minimum convex polygons. Dashed lines display 500-m depth contours in the large map and 

100-m contours in the two insets.
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 656 

 657 

FIG. 3. Migratory movements and foraging home ranges for three adult female hawksbill sea 

turtles (Eretmochelys imbricata) outfitted with satellite transmitters (PTTs) after nesting at Long 

Island, Antigua in 1998. Lines show post-nesting migrations and polygons display foraging 

areas, with darker polygons providing 50% kernel utilization distributions paired with larger, 

lighter 95% minimum convex polygons. Dashed lines display 100-m depth contours. 

658 

659 

660 

661 

662 

 663 
 664 



 34 

 665 

FIG. 4. Resident and inter-nesting Space use of two adult female hawksbill sea turtles 

(Eretmochelys imbricata) outfitted with satellite transmitters (PTTs) in northeastern Antigua in 

1998. Dark polygons provide 50% kernel utilization distributions and are paired with larger, 

lighter 95% minimum convex polygons. Dashed lines show 100-m depth contours. For PTT 

8455 the inter-nesting home range is shown. For PTT 8553, a home range is shown for all 

movements observed; we expect this turtle was resident and that this area may encompass both 

inter-nesting and foraging behaviors. 
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FIG. 5. Inter-nesting home ranges for three adult female hawksbill sea turtles (Eretmochelys 

imbricata) outfitted with transmitters (PTTs) in Jamaica over 1998–2000. Dark polygons provide 

50% kernel utilization distributions (UDs) and are paired with lighter 95% minimum convex 

polygons (MCPs). Dashed lines display 500-m depth contours in the large map and 100-m 

contours in the two insets. Inferences into the home range for the individual with PTT 7665 were 

limited by sample size, with a 95% MCP smaller than the corresponding 50% UD. 
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FIG. 6. Migrations and foraging area centroids for four adult female hawksbill sea turtles 

(Eretmochelys imbricata) outfitted with satellite transmitters (PTTs) after nesting in Jamaica. 

Black lines display national exclusive economic zones. Dashed lines show 2000-m depth 

contours and indicate that all individuals generally moved over the relatively shallow Nicaraguan 

Rise (an area extending from northern Nicaragua and eastern Honduras northeast to Jamaica). 

Solid black lines display national exclusive economic zones. 
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FIG. 7. Migrations and foraging area centroids for three adult female hawksbill sea turtles 

(Eretmochelys imbricata) outfitted with satellite transmitters (PTTs) after nesting at Long Island, 

Antigua. Migratory tracks do not intersect with centroids because turtles ceased migrating at the 

edge of their foraging home ranges. Solid black lines display national exclusive economic zones, 

and dashed lines show 100-m depth contours. A fourth individual tracked from Long Island did 

not migrate. 
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